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1 Introduction

There have been several recent studies concerning feedforward net-
Tolkr and the problem of approximating arbitra[, functionals of a
finite number of real variables. some of tf,ese studies deal with cases
in which the hidden-layer nonlinearity is not a sigmoid. This was
motivated by successful applications of feeclforwairt networks with
nonsigmoidal hidden-layer units.

This paper reports on a related study of radial_basis_function (RBF)
networks,-and it is proved that RBF networks having one hidden rayer
are capable of universal approximation. Here the e-mphasis is on the

"1t!_oI 
typical RBF networks, and the results show thit a certain crass

of RBF networks with the same smoothing factor in each kerner node
is broad enough for universal approximation.

There have been several recent studies concerning the capabilities of
multilayered feedforward neural networks. particufirly pertinent to this
Paper are results that show that certain classes of neural networks are
capable oj pr_oviding arbitrarily good approximations to prescribed func-
tionals of a finite number of reil variibles. From the theoretical point
of view, these studies are important, because they address the question
of whether a satisfactory solution_is yierded by sorne member of'a given
class of networks. More specifically, iuppose we have a problem that we
want to.solve using a certain type of neural network. suppose also that
there exists a decision function ,f : S" 

- 
S"' whose implementation as a

network plays a central role in the solution of the probiem. Imaeine that
we have a family G of functions mapping n' to n- characteriied by a
certain strucfure and having certain etem".,ts (e.g., one might consider a
set of multilayered perceptrons), and that we hJpe to solvE the problem
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by implementing some satisfactory member of G. The first question we
need to consider might be: Is this family G broad enough to contain ./
or a good approximation of .l'? Obviously, attempts to solve the problem
without considering this question might be very time-consuming and
might even be fruitless.

Several papers address this question for the case of multilayered per-
ceptron models with sigmoidal nonlinearities, and affirmative answers
have been obtained by showing that in a satisfactory sense the family Ci
considered can actually approximate any decision function drawn from
a certain large class (Cybenko 1989; Hornik et al. 1989).

At the present time, with the advantages and limitations of mul-
tilayered perceptron networks more transparent and with results con-
taining comparative studies becoming available (e.g., Lippman 1989), re-
search concerning different types of feedforward networks is very active.
Among the various kinds of promising networks are the so-called radial-
basis-function (RBF) networks (Lippman 1989). The block diagram of a
version of an RBF classifier with one hidden layer is shown in Figure 1.
Each unit in the hidden layer of this RBF network has its own centroid,
and for each input 1 : (:r'r. t:2. . . . ..r;".), it computes the distance between rtr
and its centroid. Its output (the output signal at one of the kernel nodes)
is some nonlinear function of that distance. Thus, each kernel node in the
RBF network computes an output that depends on a radially symmetric
function, and usually the strongest output is obtained when the input is
near the centroid of the node.

Assuming that there are r input nodes and nr output nodes, the overall

Figure 1: A radial-basis-function network
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response function without considering nonlinearity in an output node has
the following form:

(1.1)

where 11 e rV the set of natural numbers is the number of kernel nodes
in the hidden layer, I,t', € fR"' is the vector of weights from the ith kernel
node to the output nodes, ,r' is an input vector (an element of llt'), l(
is a radially symmetric kernel function of a unit in the hidden layer, zi
dnd a1 are ihe centroid and smoothing factor (or width) of the i th kernel
node, respectively, and 17: 10. x) - R is a function called the activation
function, which characterizes the kernel shape.

A gaussian function is often used as an activation function, and the
smoothing factors of kernel nodes may be the same or may vary across
nodes.

In this paper, RBF networks having the representation 1.1 are stud-
ied. Strong results are obtained to the effect that, under certain mild
conditions on tl're kernel function li' (or the activation function (), RBF
networks represented by 1.1 with the same o; in each kernel node have
the capability of universal approximation. Cybenko (1989) also consid-
ers feedforward networks with a single hidden laver of kernel functions.
However,  only Ll  approximat ion is 6nsidered in the corresponding parr
of Cybenko (1989), and only the case in which the smoothing factors
can vary across nodes is addressed. A detailed comparison is givcn in
Section 3.

This paper is organized as follows: In Section 2 our main results are
presented, and in Section 3 a discussion of our results is given.

2 Main Results

In this section, we consider the approximation of a function by some
element of a specific family of RBF networks.

Throughout the paper, we use the following notation and definitions,
in which "A/, !t and I?' denote the set of natural numbers, the set of real
numbers, and the set of real r '-vectors, respectively. Let Tl'( R'), /.-(!P'),
C(Jt'), and C, (|)t '), respectively, denote the usual spaces of $l-valued
maps I defined on S' such that ./ is 1.ith power integrable, essentially
bounded, continuous, and continuous with compact support. The usual
Lp and 1-- norms are denoted by ]1 ]1, and ll . ] l-, respectively. The
integral of J'e Ll()R")over a Lebesgue measurable set I in It '  is written
as !.a.f Q:)dr or, if .f is a function of several variables and, say, .l (u..) e
It(n') we write l^J@".r:)d.r; to denote the integral of .f Q..) over l. The
convolution operation is denoted by " *:'and the characteristic function
of a Lebesgue measurable subset I of )t' is written as 1.1.
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The family of RBF networks considered here consists of functions
r7 : lt' 

- 
It represented by

(2.1)

where -11 e . \ ' r ,  o > 0,  r / , ;  € !1,  and z;  € l t ,  for  I  :7. . . . . , . |1.  We cal l  th is
family 56.

Note that 2.1 is the same as 1.1, with the exception that the smoothing
factors in all kernel nodes are same, and the output space is E instead of
R"'. It will become clear that the extension of our results to multidimen-
sional output spaces is trivial, and so we consider only a one-dimensional
output space.

We will use the following result, which is a slight modification of a
theorem in (Bochner and Chandrasekharan 1949, p, 707).

Lemma1,. Let .f € r1'()R'), p € 11. :r), and let o I l)t '  
- 

W be nn inte-
grable ftmction such that .l'* ct(r)dt - 1 . Define 6r, : !?' 

- 
'R by o.(.r') :

( l le '  )o( , r le)  for  r  > 0.  Then l l ,p,  *  l  -  . f  1, , -0 as e *  0.

Proof. Note that o. € I1(n'). By a direct extension from !? to l)?, of a
standard theorem in analysis (Bochner and Chandrasekharan 7949 , p. 99) ,
one has e,* .f € Lp(n'), which is used below.

By a change of variable,

Thus,

I  (o.  * . / ) (o)  -  l ( , i ) l / ( r i  -  er)  - . l (o) lcr( .r : )dr I

With , t  def ined by 1 1,  t  7 ' , j  -  1,

11,, ,*J- . f l l , , lr(rr) l- ) l l ,, - ,,) . l '(n) I

sup 1. .  ( ) ( . t ) l  [  / , ( , r )
t . . t , t t i . t , ,=tJt  'JP

. J (.,, r.r) - ./(o) rlod,t:

./ l?'

by Fubini's theorem and Holder's inequality.

(r2.  * . / )(rr)  :  
.1. ,  . t t^ -  t i )ct ,( t : )r t t : :  

I ,o , f  kt  et :)c, t( t i ) r t t

l.
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Since ll f (. - et:) - /O ]"< 2ll f llo and translation is continuous in

,r($?') (see Bochner and Chandrasekharan 1949, p.98, and consider its

direct extension to IIl') we have

l l  O.x/- . /  n+0 as e 
-0

by Lebesgue's dominated convergence theorem. This proves,the lemma.

Our Theorem 1 (below) establishes that, under certain mild conditions

on the kernel function K, RBF networks represented by 2.1' are capable

of approximating arbitrarily well any function ln lp(S').

Theorem 1,, Let K : $?' 
- 

Yl. be an integrable bounded function such that K

is continuous almost eaerywhere and .1,p, K(r)dx l0' Then the family 56 is

dense in r'(n") for euery p e [1, oo).

Proof.  Let  p € 11, 
-) , . /  

e l r ($t ' ) ,  and e > 0.
Since C.(U?') is dense ln trp($t") (Rudin 1986' p.69), there exists an

.1. e C"(!}t'-) such that ll f.- f llr,< r13. We will assume below that /" is

nonzero. Notice that this involves no loss of generality.
Let r!: $?" 

- 
Jt be defined by (tQ): (1/lur.r.r.t o)' K(."), for .r € D'.

Then qj satisfies the conditions on O in Lemma 1. Thus, by defining

do : ft '  - 
W as in Lemma 1, we obtain l l 6"', f,,- f. l lr- 0 as o * 0.

Therefore, there is a positive o such that d" * f .- f"l lr<'13.
Since ./" has compact support, there exists a positive 7 such that

supp./" c [-",?]'. Note that / '(rr - ')/"O is Riemann integrable on

l-T,Tl', because it is continuous almost everywhere and is bounded by

l l  d" l l -  .  i l  /"  l l*
Defineu,, :$ l ' -nby

where the set {a;  e $t '  : i : I ,2, . . . , r t ' ' )  consists of al l  points in [-7." ] '
of  the form l -T + (2i [ ln) , . . . ,  -T + (2i ,Tln)1, ' i r , i ,z , . . . , i , :1,2, . . . ,n.
Note that u,(a) is a Riemann sum for [y'r,ryd"@ - r)f,'(r)dr, and

Ir ,.rt, d,(a - t:)f .(r)dr: ln, d"(a - r)f 
"(t:)dr 

: (6" * /")(") Thus, for

a.,y rr e S",r,(t,v) -: (.$o */.)(o) as n + co. Since @" * f. € Le(!ll'), there
is a positive fi such that

I  l1o" x /" ;1n) lP do < \ r  l9\P
Jtt" \ t ,71 ."11,

Since @" is bounded and $" € -L1(n'). we have d" € Le(ft'). Thus, there

exists 12 > 0 such that

/ t r \ '
r ' , ( r r  )  - -  Lr"h -  o;  ) / ,  ( r r ;  )  [  -  ]

t  I  \ / r ' l

t  le, \o)  pao.(
JR,11 -r ,  r r1.  \ e 1l f  . l l*  (zrY) '



Note that I  r ' , , (o)  <l l  . / ,  
-  

( .27) ' (1 ln ' ) l ' i - ,  t1nlr  r r ; )  .  By Jensen's
inequality (Rudin 7986, p. 62),

[ r  r t '  ]1 '  1 , i

I  
'  

f  r , , . r , '  r ,  r  |  - t  , " t r r  - r r  t  ! '
I t r ' " .  '  I  t t ' - .
L r-r  I  /  I

Therefore,

i ' , , ( r i )  r '< |  . / ,  . ,  (27) f '+ i  r . . ,n(o rr , )  '' l ' '=

Definenr-max(Tr.72+' l ' ) .  Using l r r ;1 1l  foral l  7 €\1-2. . . . . t1,

|  4tn(r t  ( \ i )  I t '  d( \  < [  r ; to(r t )  t '  dt t
. / :R,\J l r . l , l ,  , / I t , \ [  tz tz)

and so

l , t ,  , ' ,  r ' , , '  I  
r " ' ( r r )  "  r l r r  < '  ( ' l9) t '
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(2.2)

Also,

[  , " '  -  .1 .  ) r ' r  )  1"11v {r  e l i '
/P \ [  I . I l

r? ?)

because ' l , t  > Tr.  Since r lo *  .1, .6 7-r ' ( rR')  and ?' , ,  l - (  o.  ] ] -  . f ,  
-(2I) ' .  one has

I t  , "  + l , ) (o)  -  i ' , , (o)  l "  rkr  
-  

0 as rr  -  :c
' / [  l , '  I l

by the dominated convergence theorem. Thus, there is an N e ,V for
which

I t ,n,  *  . f  , ) (u)  -  1,-u(o) t '  r l r t  <-  ( r  f  9) t '
,J | ' t 'r. t ' \)1,

Therefore, using 2.2 and 2.3,

/rN rito * . l ' ,  ,, I l 'N . 1:R,\l L."rl, ,, * l l  ( irr r:t, '* .1.)
' 1;- 'r i,. 'r;1, ,, I (r2" * f , ) '  1:it.\ l  rt,.?,1, t,
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From the above, ll t,r - .l' lln< e . Since

i 'v( ' )  -  t  ( )n\ '  -  t r i ) .1 ' , ( . , ' ,  f+) '
Vn . /

A' /  _ t r . \

- t t , ' ;h.( ' - " i )eS,.
u,\a/"

with

7. 27. 1
t t ' i  -  

iJ ' ( , ' , ) (  J 
t ' r* ,  

^ ,*1
the proof is complete.

By K radially symmetric/ we mean that ll t: )lr:ll y llt implies K(.r') :
K(y), In this case, the activation function 17: l0.oc) --- llt is obtained by
def in ing g(r l ) :  K(r) .  where z is any element of  $t '  such that l l  . l lz : ,1.
Therefore, in the case of radial symmetrv 2.1 can be written as

i lI

t t ( r . )  I , , , ,  ^(+) 
: i t t ,  ! t (  ' l  '  ' , i l r )

Note ,nu,1",." ,, :" l-r",.";1:, or )a'u, ,r-J",ry or the kerner
function K in the above theorem. Thus, the theorem is stronger than
necessary for RBF networks, and might be useful for other purposes.
Similarly, in the following theorem and corollaries, radial symmetry of
the kernel function K is not assumed, even though we are interested
primarily in radial-basis-function networks.

If we interpret the term "radially symmetric" more generally than
literally, then we may say that K is radially symmetric with respect to
ll . l l  i f l l  " l l : l l  y l l  implies K(r;) : K('y). where l l l l  ir some norm defined
on $t''. With this generalization in mind, we sometimes use ll r - z; ll for
the distance between :r: and z1 instead of ll :r - z.i llz.

A slight modification of Theorem 1 given below addresses the case in
which the function / we wish to approximate with an RBF network is
not an element of tp(S''), but an element of lf..(ff i ') for some p e [1. oo).
Here the locally-Lp space lj'".(tr'') ,7 < p < oo is defined as the set of all
measurable I : $l ' --- ft such that / . 11,r,r.,r,1, € rn($t") for every N e,A/.
One way to define a metric on tl".(W'') is by

co

r, .  t f  , , \  \ - r  t t
I ' loc\J. :J l -  /  L

rt:7

l l  ( /  _ g).77_,t . , t1,  tn
1+ l l  ( /  -  g)  .1;- , r , ,21,  l ta

The following is direct corollary of Theorem 1.

Corollary 1. Let K : ffi'. -- ffi be an integrable bounded function such
that K is continuous almost everywhere and .l*, K(r)dr f 0. Then the
family ,Sr< is dense in I{'..($t.) for every p e i1. oo).

Proof. Let p e l1,oo) ,J e Ll",($t' '). and e ) 0. Choose rrt. €,V such that
D7.,* t2-"  < ef2.
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Since / .7;*,^1, € Le(W'), by Theorem 1 there is a a € S7r such that
l l  f  '77,. ,*1, -  o l lp< ef 2.  Thus,

@m

prc,(f,u)

which establishes the corollary.
Theorem 1 and Corollary 1 concern approximation with respect to

the Lp metric or a metric induced by trr mehic. We next give a theorem
concerning the approximation of continuous functions with respect to a
metric induced by the uniform metric.

Theorem 2. Let K : ffi' 
- 

fr. bd an integrable bounded function such that K
is continuous and !s, K(r)dr 10. Then the family 56 is dense in C(Yi,) with
respect to the metric d defined by

rt t  r  nt :  S r- '  '  ( f  -  g) '71, ,1 ' '  *
- \ r  \  r  /  

?r-  1+ ] ]  ( /  -  9)  .  11_,, ,1,  l l_

Proof. Let f : ffi' 
- 

$l be any continuous function, and e > 0. Define
/: ft '+ S by normalizing K, and define Qo:ft '* S for o > 0 as in the
proof of Theorem 1.

Pick a natural number m such that 2-* < €13, and then choose a
positive 7 such thatT > m.

Since / is continuous on the compact set [-rn, tn],, we can obtain a
nonzero continuous function / : S' * W with the property that /(c) :

f ( r )  for  r  € [ -m.ml",  and | t r l  :0 for  r  € n ' \  lT.Tl ' .  Note that  f  is
bounded and uniformly continuous.

Using / € ,1(m'), pick a positive 76 such that

. f , t ,  r, .r, , .  '  alrt  I  r lr  <

Since / is uniformly continuous, there is a 6 > 0 for which r-a)lz<5
implies

t  n- ,  ,  ; .  |  
(

I  I  \ , t )  -  J ta)  l< 6lk i l ,  
(2.5)

Chooseo > 0suchthat l l  or  ] ]2< 6foral l r  € l -To,To], .  Leta e l -^,^1, .
Then using 2.4 and 2.5,

1a", ,  i11o)- f to rr  < [  i r .  -  or)  -  / ro)  .  I  o(r)  dr
J.lr.

f -

s l ,  -  - , .1 
f (a-  or)  -  f (a)1.  I  g(r) ldt

w 
L_a0ta0l

t -
+ l -  .  _ .2 /  l l -  |  g(r) l  dr<e 13 (2.6)

Jgt ' \ [ - "o,To]"

(2.4)
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Note that (4t"* , f1@1 : . ly  r r l  o"( !  -  r | . i ( r1d:r .  Def ine, ' , ,  :Jt '  -  Rby

, l2T\ '
r ' , , ( r r ) -  I , , . t , '  - , r ; ) . l  1rr , ) | -  I

, l \ t t /

where the set {o;  € } t '  :  l :7.2. . . . . r t '  I  consists of  a l l  points in I  I .T] '
of  the form l -T +(2i1r l l r ) . . . . .  T + (2_i ,Tl i )1,  i r . . . . . i ,  : \ . . . . . r t .

Since the map (.s. r:) + p"(.5 -.r ') l(L:) is uniformly continuous on

f-rr t . r r t l 'x l  T.T) ' ,  thereisa6e > 0suchthat,s e I  r r t . r r r ) '  , r ' .y  € l -T.Tl '
wi th l l  . t  - l t  2 '  fu impl iesl , ,^r-  . r ) . i t . ,  t  , ,^rs- t1t i t t1t1 ,3127) ' . l t
easily follows that for r, 2rfiT t,,,

I
r , , , (o)  -  |  t t " ( .a t :1f  Q)1dt ' l< el3 (2.7)

r l  T.T),

Choose I e I such that X > 2\/FTl[e. Then using 2.6 and2.7,

i , ,y(rr)  lQl l  < 2e l3

in which o € [  ; r r r . rn] '  is  arbi t rary.  Since . f  l t ) : . / t  ,1for. ,  e |  , , , . , r t ) ' ,

, t t , ,^  / r  i ,  "  l l  ( ' l ' - i 'v)11 
""1 '  -

o- ,_ t*  , ,  , t  , '1-)1;  , , . , ,1 '  l l -

which finishes the proof. 

/r-rrr+r

The statement in Theorem 2 is equivalent to the statement that 5'n is
uniformly dense on compacta in C.'()i'') under the indicated conditions on
K. That is, under the conditions on 1{ of Theorem 2, for any continuous
function f' : lJ?' + J?, for any r > 0, and for any compact subset C c $t',
there exists a q e 56 such that l l  (q l) ' lcr l l-< c. Thus, by a useful rela-
tionship between uniform convergence on compacta and convergence in
measure (Hornik et al. 1.989 , lemma 2.2) , we have the following corollary:

Corollary 2. Let y. be a finite measure on W'. Then under the conditions
on K of Theorem 2, the family Sr< is dense in C()?') with respect to the
metr ic p, ,  def ined by p, ,Q.g) :  inf{e > 0: t r r { . r :  e ) t '  :  / ' ( r )  r r ( . r : )  1; '
. )  <,1.

3 Conclusions and Discussion

The results in Section 2 establish that under certain mild conditions on
the kernel function, radial-basis-function networks having one hidden
layer and the same smoothing factor in each kernel are broad enough for
universal approximation. This provides an analytical basis for the design
of neural networks usine radial basis functions.
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To the extent that the results of this paper bear on the approximation
of a function in 11(S') with a finite sum DYtwr.K(.- zif o) of kernel
functions, there is some overlap of a part of Cybenko (1989) and this
study. Using a theorem due to Wiener (Rudin 1,973, p. 210) and the
pertinent argument used in Cybenko (1989), it can be shown that the
set { ! [ ,  rLt ; .K(-  z.r lo i )  :  M e Jt l ,  r f ;  € U?, z i  € f t ' ,  o i  I  0]  is  dense
in l1(W'), under the condition that K € ,1(W') and /y1, K(r)dr I 0.
This certainly shows the capability of certain RBF networks with respect
to approximating an arbitrary tr1 function. However, note that here the
smoothing factor o; in each kernel node has a full degree of freedom, that
is, the d?s can have different values across the kernel nodes. Thus, the
major differences between this LI approximation and the results given
in Section 2 concern the class of RBF networks considered as well as the
metrics used.l

From the theoretical point of view, this condition concerning the same
smoothing factor is often very important, because many studies are con-
cerned with approximation using the functions lfr'wi' lt( - zi )
(Broomhead and Lowe 1988; Powell 1985; Sun 1989), and radial basis
functions with the same smoothing factor in each kernel node are often
used in real applications (Broomhead and Lowe 1988). In connection
with studies of approximation using radial basis functions, the recent re-
sults concerning the solvability of radial-function interpolation (Powell
1985; Sun 1989) are interesting, because they are directly applicable to
the training of neural networks of the type we have focused attention
on. These studies (Powell 1985; Sun 1989) are concerned with the inter-
polation of data by the rl functions h( . - zr l), i  : 7,....m,, when the
data (z i , l / r )  wi th z i  €Vl ' ' ,9 i  € $?, i :7, . . . in l  are given. More precisely,
the existence of a unique interpolant lit'uti.h( .- zi ) for distinct data
(2.;,y1) with z; € S', gi € W, ' i  : 7,.. . . rn has been shown for a certain class
of pairs of h and ' ll. This existence leads us to an interesting obser-
vation: Suppose that training data (z,,ai). i -- 1,...,ff i , are given, where
zi  €Yi" . l / r . :1 i f  z i  € A. ' !1" :  -7 i f  z, t  € B, and A, B c n '  wi th A )  B :  A-
From the given data,  construct  a new data set  z i  eW^. i : \ , . . . , 'm,by
defining

^ |  /11. , - . ,  \  (  , , - . , ,1\r
z.: t , t  -1, . . . .ut-  ' l l'  f  \  o )  

" \  o l )

Note that zi e ft'^. while zr € $1". Then by the above existence property,

1In this connection, Wiener's theorem referred to above can also be used to give a

direct proof that -Ll approximations can be achieved with linear combinations of trans-

lates of any element of Z1(|Ii') whose Fourier transform never vanishes. The gaussrans

exp(-o l. ll) are examples of such functions.
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for certain classes of 17 and , there exist 
^/ 

€ !?..7 : 7..... rrt. such that
for each I  e {1.2. . . . . rn| .

, , , / \
! t ,  r , l , : t lJ l

; '  \  o )

Thus, wi th A -  ( ) , .  
^2. . . . . ) , , ,1r ,  

z1 t \  > 0i f  ; : ;
In other words,  { ( t i .y i l  :  i  -  1. .2. . . . . r r r }  is
case. Therefore, the perceptron learning rule
this network.

Additional related papers are (Hartman et al. 1990; Sandberg 1991).
The work of Hartman et aI. (7990), which appeared after this work was
completed, considers gaussian functions and approximations on com-
pact subsets of lR' that are convex. It is shown there that networks with
a single layer of gaussian units are universal approximators. In Sand-
berg (1991) more general results for gaussian functions are given as a
special case of propositions concerning the uniform approximation of
functionals defined on compact subsets of spaces that need not be finite
dimensional. Also, it is observed in Sandberg (1991) that (what might
be called) "function-space feedforward neural networks" with an input
layer of bounded linear functionals and just one hidden nonlinear liyer
are universal approximators of real continuous functionals on compact
subsets of a normed linear space.
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